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The dependence of the computation of advective—diffusive transport phenomena
on the orientation of the mesh with respect to the flow direction is analyzed. Poor
performance of the classical Galerkin finite-element method in the convection-
dominated regime is alleviated by stabilization. We propose definitions of the stability
parameter that rationally incorporate the flow direction. Numerical tests compare the
performance of the proposed methods with established technig@esoz Academic Press
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1. INTRODUCTION

The Galerkin finite element method with low-order piecewise polynomials perforn
poorly for advection-dominated equations. Adding terms to the variational formulation
well-accepted practice, leading to stabilized methods.

In simple settings the standard Galerkin finite-element method produces central differe
type approximations. It is well known that the central difference representation of advect
terms gives rise to spurious oscillations in advection-dominated regimes. This led to
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development of upwind difference schemes [17, 18], which are stabilized to preclude os
lations by adding artificial diffusivity. Early upwind finite-element schemes [19], still withir
the Galerkin framework, were similar. Stability was achieved at the expense of accur
due to incorrect treatment of diffusion terms, leading to loss of consistency (see, e.g., [1

Stabilized finite elements have been around for more than 20 years. These methods
the desirable properties of improving the numerical stability of the Galerkin method and
preserving good accuracy properties. This is achieved by adding terms to the basic Gale
formulation to retain the weighted residual structure. The streamline upwind/Petrc
Galerkin (SUPG, or streamline diffusion) method was introduced by Hughes and Broc
[5, 15]. Variations of this idea considered for advective—diffusive equations are: the Galerl
least-squares (GLS) version, introduced by Hughes, Franca, and Hulbert [16], and a
years later, the version termed unusual stabilized finite-element method (USFEM) of Fra
etal.[6, 9].

The additional terms in stabilized finite elements are residual-based and contain st
lization parameters. The residual-based operators in these terms translate into a strea
diffusion effect. The degree of stabilization in this direction depends on the stabilizati
parameters. These were originally conceived based on comparisons to exact solutior
one-dimensional test problems on uniform meshes [5]. They were extended to general
nomial discretizations using error estimates [9]. The stabilization parameters were revisi
taking into account a zero-order term in the equation [6, 12]. The parameters are compl
explicitly for the Galerkin method enriched with bubbles [7, 10, 11], where the polynomi
is piecewise linear enriched with a “residual-free bubble” (RFB) [2, 4]. The residual-fre
bubble is condensed out yielding a stabilized method with an explicit recipe for the stabi
parameter.

The design of the stability parameter in previous work ignores the flow direction, -
accounts for it in arad hocfashion (see, e.g., [5]). In this paper we analyze the spuriot
anisotropyinherent in the Galerkin method, i.e., the dependence of the solution on the ori
tation of the mesh with respect to the flow direction. On the basis of this analysis we prop
definitions of the stability parameter that rationally incorporate the flow direction. Nume
ical tests compare the performance of the proposed method with established techniqu

A family of stabilized methods for advective—diffusive problems, including Galerkin
least-squares, SUPG (also known as streamline diffusion), and the unusual stabilized fil
element method is presented in Section 2. These three methods share the approa
appending to the Galerkin equation terms containing residual-based operators multiplie:
stabilization parameters. The analysis of the Galerkin method for the case of a uniform n
aligned with constant velocity, and the design of stability parameters based on this analy
are reviewed in Section 3. The presentation is unconventional, suitable for generalizatio
multi-dimensional configurations, but the results and conclusions are known. In Sectio
more general orientations of the mesh with respect to the flow direction are considel
A simple and economical definition of the stability parameter that rationally accounts 1
flow direction is proposed. The numerical performance of the proposed method anc
established techniques are compared in Section 5.

2. STABILIZED METHODS FOR ADVECTION-DIFFUSION

Let @ c RY be ad-dimensional, open, bounded region with smooth boundarwe
partition €2 into nonoverlapping regions (element domains) in the usual way, denoting t
union of element interior, such that2 = Q.
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2.1. Boundary-Value Problem
Consider the (homogeneous Dirichlet) advective—diffusive problem of finding a sca
field u(x), such that
Lu=f in 2 and Q)
u=0 onrl’, (2)
where Lu = —V - (kVu) 4+ a- Vu, the diffusivity « (x) > 0 is known,a(x) is the given

flow velocity, andf (x) is the prescribed source distribution. Generalization of the resul
presented herein to problems with other types of boundary conditions is straightforwar

2.2. Galerkin Approximation
The Galerkin approximation is stated in terms of the set of functidhs H}(Q2). The
standard finite-element method is to fidtle V" such that

a@™, uM = ", f), vl e VN, 3)

where(., -) istheL»(2) inner product. (The form of the right-hand side assumes sufficient|
smoothf.) The bilinear operator is

a(v,u) = (Vv,«Vu) + (v,a- vVu). 4)

2.3. Stabilized Methods

The standard family of stabilized methods is obtained by appending to the Galerkin ec
tion (3) terms containing residual-based operators multiplied by stabilization parameter
namely

a@", uM + (Lo", tLuM g = ", ) + (Lo, Th). (5)

Subscripts oninner products denote domains of integration otheftHaifferent stabilized
methods are obtained via definitions of the differential operator:

Lv, GLS [16]
Lv={ Logw=a Vv, SUPG [5] (6)
—L*v=V.(kVv)+a-Vu, USFEM [9]

The methods differ in the treatment Gf- (« Vu") in the added terms.

Definition of the stability parameteris discussed in the following sections. We restrict
the discussion to linear elements with constant diffusivity within each element. In this c:
V - Vo = 0in © and thethree methods coincide

3. ONE-DIMENSIONAL ANALYSIS AND DESIGN

We review the analysis of the Galerkin method in one dimension (representing the cas
a uniformd-dimensional mesh aligned with a constant velocity) and the design of stabil
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parameters based on this analysis [5]. The presentation in the following analysis is be
suited for generalization to multi-dimensional configurations than the one in [5]. The rest
and conclusions are identical.

We align the positivex-axis in the direction of the flow. In addition to the constant, ar
exact, free-space solution to the advection—diffusion equation (1) in one dimension, w
constant coefficients and in the absence of sources, is of the form

u = exp(|lajX/k). @)

3.1. Spurious Oscillations in the Galerkin Method

We consider a uniform mesh of linear elements of siz@ith nodes ak, = Ah. Nodal
values of the exact solution (7) are

u(xa) = (expa))”, (8)

wherex = % is the element &let number. Similarly, we assume that corresponding nod

values of finite-element solutions are
Ua = (expa")*, ©)
whereua = u"(xa). The dependence ef' on the element&let numbe is determined
by the analysis of a three-node stencil.
The Galerkin method (3) yields the following equation at interior néde

—(1+ oa)Ua_1+ 2Up — (1 — Ol)UA+1 =0. (10)

Substituting (9) leads to

0=—(1+a)exp(—2aM) + 2 — (1—a) exp(2a™M) (11)
=2 — (exp2a™) + exp(—2aM) + a(exp2a") — exp(—2aM)) (12)
= 2 — 2cosh2a™) + 2o sinh(2a"). (13)

This simplifies to
sinh(e™) (« cosha™ — sinh™) = 0. (14)

Solutions to this equation are the trivial solutieh = 0 (i.e., the constant is represented
exactly) and

oM = arctanhv. (15)

This indicates that" approximatesr accurately fora <« 1. This presentation may be
reconciled with familiar analyses (such as [5]) by noting that

1+«
1—o’

1
arctanhy = > log (16)
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FIG. 1. Errorina" for Galerkin (3) in the range < 1 (@" € R).

so that

1
exp(2 arctantw) = 1 Tt

(17)

—

According to Eq. (15)a" is real valued forx < 1, approximatingr with increasing
accuracy ag — 0 (Fig. 1). Considerable degradation in accuracy even prior to the on:
of spurious oscillations at = 1 is evident.

Fora > 1, oM is complex valued. By relations for hyperbolic functions with comple>
arguments (see, e.g., [1])

sinh(2 Rea") +isin(2 ImaM)
t hy = . 1
anha’ cosh(2 ReaM) + cog2 Ima") (18)

Here i= /—1 is the imaginary unit. We see that

- h
coshi2 RZ';‘E?) Ircaos)(z Imah) = Ima =0. (19)
Since Ima" # 0, we set
Ima" = 7/2. (20)
By the Euler formula
Ua = (—exp2 Rea™))A. (21)

The minus sign indicates spurious oscillations. The real parf of

Rea" = arccoth, a>1 (22)
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FIG. 2. Rea"for Galerkin (3) (Ima" = /2 fora > 1).

is shown in Fig. 2. In summary

h_ {arctanhx, a<l (23)

arccothw + i /2, a > 1

3.2. Stability Parameter

Repeating the preceding analysis for the stabilized methods (5) (all coincide for line
elements) shows that defining the stability paramete’rasﬁ &0, where

1 1
_ _ = 24
tanha « (24)

éo

leads tax" = a.
A different approach to designing the stability parameter is based on bounds from el
estimates [9]. For linear elements this results ia % &rFn, Where

£ _ /3, 0<a <3 (25)
FRH = 1, 3=<a.

Brooks and Hughes [5] refer to this as a doubly asymptotic approximation (see Fig.
Francaet al. [9] defined the parameter in terms of thenorm ofa. Here we employ the
2-norm. In the following numerical results we refer to thid=adH.

Remark. As noted in the Introduction, Galerkin finite elements are related to centr
differences. In the settings of Section 3.1, the analysis equally applies to central differen
with the same conclusions. The stabilization by the stability parameter of Section 3.2, ba
on this analysis, is similar in a sense to stabilization by upwind differencing. The importe
difference between classical upwind differences and stabilized finite elements is in
manner in which the stability parameter is employed, adding stability without yieldir
accuracy due to the weighted residual form of Eq. (5).
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o

FIG. 3. Different terms in the stability parameter.

4. SPURIOUS ANISOTROPY AND STREAMLINE DESIGN

In addition to the constant, an exact, free-space solution to the multi-dimensio
advection—diffusion equation (1), with constant coefficients and in the absence of sour
is of the form

u=exp@a- X/k). (26)

4.1. Spurious Anisotropy in the Galerkin Method

In contrast to exact solutions, Galerkin solutions are anisotropic in the sense that t
depend on the orientation of the mesh with respect to the given velocity. This phenome
is demonstrated in the following analysis.

We consider a uniform, two-dimensional mesh of bilinear elements ofisé&gned with
the global axes, with nodesxt = (mh, nh). Sincea” = |a|(cosd, sind), nodal values of
the exact solution (26) are

u(xa) = (exp2ac))™(exp2as))", (27)

wherec = cosf ands = siné. Similarly, we assume that corresponding nodal values ¢
finite-element solutions are

ua = (exp2ac)™(expaMs)", (28)

whereu = uM(xa). The dependence ef' on the element &let numbew and the orien-
tation of the mesh with respect to the streamline direction is determined by the analysi
a nine-node patch (Fig. 4).

The Galerkin method (3) yields the following equation at interior néde

sinha"c) (ac cosha"c) — sinha"c)) (3 + 2 sintf(a"s))
+ sinh(@"s)(ascoshas) — sinha"s))(3 + 2 sinff(a"c)) = 0. (29)
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FIG. 4. Nine-node patch.

The trivial solutiona™ = 0 satisfies this equation (i.e., the constant is represented exactl
There is an additional solution, corresponding to Eq. (15) when the mesh is aligned v
the flow. The variation of this solution with the orientation of the mesh with respect to tl
streamline directiord) is shown in Fig. 5, for cases in whielf is real valued¢ < 1). Note
that the best performance is attained when the flow is along element diagbrals/(4).

4.2. Streamline Design of the Stability Parameter

Repeating the preceding analysis for the stabilized methods (5) (all coincide for the m
considered) provides an optimal definition of the stability parameter

h 1 te(ca — tc)(3/cs + 2ts?) + ts(sa — ts)(3/c + 2tc?)

= 30
’ 2lal « 3c2(tc/c9)? + 3s?(ts/cc)? + 2tc?ts? + 6cs te ts (30)

that leads toa" = « for any orientation. Herecc = coshcw), ¢s = coshsa), tc =
tanh(ca), andts = tanh(sw). This form of the definition is chosen to reduce sensitivity
to finite arithmetic.

0.7 :
L - a=09 -
0.6f \\ [ 05 K
| — 0.2
0.5 y
3 AN )/
= 04t /.
3 | //
= 03 /
5_5/ \\ -
0.2t
0.1F--- S R -
0
0 0.1 02 0.3 04 0.5
o/nt

FIG. 5. Anisotropy in Galerkin method.



STREAMLINE DESIGN OF STABILITY PARAMETERS 123

FIG. 6. Directivity in both limits.

In the limits, this streamline parameter may be expressed simply as

h
T = m D) éo(@), (31)
where
ct+s4, a =0,
= (32)
1(-:‘1-+SSCS 0<6<mn/2), a — o0.

The least amount of stabilization is applied when the flow is along element diagon
(6 = /4, Fig. 6), i.e., when the performance of Galerkin is at its best (Fig. 5).

The difference between the two casedois not large. This suggests a definition of the
parameter that may be employed in practice. Since the advection-dominated ¢asB) (
is the challenging regime, we propose

h Cosf + sind ( 1 1) (33)

= ﬂ 1+ 3 cos sind \tanhe o«

Note that the orientation should be regarded so thatO< 7 /2. This presents no practical
limitation.

In the following numerical results we refer to the parameter that leaes o «, defined
by Eq. (30) as the streamline paramet®TR), and the one defined by Eq. (33) is called
the estimated parametdE$T).

5. NUMERICAL RESULTS

In this section we compare the numerical performance of stabilized finite-element me
ods with the proposed parameters to established techniques. We consider the follo
methods:

STR Stabilized finite elements with the streamline parameter (30).
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EST Stabilized finite elements with the estimated streamline parameter (33).

FFH Stabilized finite elements with the FFH parameter [9], see (25).

RFB The method of residual-free bubbles, with the bubble derived for the advecti
limit [3].

We use bilinear elements in all tests.

5.1. Smooth Boundary Layer

Consider a constant-coefficient advective—diffusive problem in the unit squaredD,
1[. There are no distributed sourcels £ 0). Inhomogeneous Dirichlet data are specified
on the boundaries so that the solution is
exp((X—Xo)-a/k)—1

u) = exp(—Xc-a/k)y—1 ~ (34)

wherex. = (1, 1). The solution is of the form of (26), normalized so that@ < 1. We
use a uniform mesh with 20 20 elements. Table | shows the relative error, measured |
the L, norm. The error relative to the exact solutiordat 0 is consistently larger since
the boundary layer spreads along an entire side of the domain, whereas in other case
concentrated in a corner. In all cases, the interpolation error dominateSTRondEST
the approximation error is negligible. THEST results are comparable 8TR, so from
here on we show onlST results.

5.2. Advection Skew to the Mesh

We modify Problem 5.1 so that there is a discontinuity in the inflow Dirichlet data ¢
x = (0.475, 0), with homogeneous Neumann outflow conditions (Fig. 7). The discontinui
is propagated into the domain creating an internal layer. Hese2.5 x 10*. A piecewise
constant reference solution (based on the advective limit) is set equal to the inhomogen:
Dirichlet value to the left of the discontinuity, and zero to the right. The problem is solve
ato =z /6, w/4, andr/3. For example, solutions &t= /3 are shown in Fig. 8EST
provides some improvement oveFH, yet RFB exhibits the best performance for these
problems with discontinuities, particularly when the flow is along element diagonals (Fig. !

TABLE |
L, Relative Errors [%], Problem 5.1

Relative to exact solution Relative to nodal interpolant
o 0/ STR EST FFH STR EST FFH
2.5 0 7.62 7.62 8.59 Bl x 107 5.25x 1074 1.81
1/6 1.14 1.15 1.25 B4 x 10 3.28x 1072 0.337
1/4 1.14 1.15 1.26 B8 x 1071 4.74 x 1072 0.362
250 0 12.8 12.8 12.9 A13x 1078 9.75x 107**  3.65x 1072
1/6 1.67 1.67 1.75 B2 x 107 1.27x 1073 0.361
1/4 1.67 1.67 1.77 a7x 10 1.20x 1073 0.411
25 x 10 0 12.9 12.9 12.9 87 x 107 1.00x 10  366x 10*
1/6 1.67 1.67 1.75 Blx 10 1.28x 10°° 0.361

1/4 1.67 1.67 1.77 a2x 10 1.21x10° 0.410
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FIG. 7. Statement of Problem 5.2.

FIG. 8. Solutions of Problem 5.2 &t = 7 /3: EST (left), FFH (center), andRFB (right).
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FIG. 10. Solutions of Problem 5.3 &= = /3: EST (left), FFH (center), andRFB (right).
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FIG. 11. L, error [%]in Problem 5.3 relative to reference solution (left) and nodal interpolant (right).

5.3. Advection Skew to the Mesh with Outflow Boundary Layers

The outflow conditions of Problem 5.2 are changed to homogeneous Dirichlet conditio
leading to outflow boundary layers [3, 9]. The reference solution is unchanged in the dom:
but the interpolant now accounts for the outflow boundary layers. The problem is solve
0 = /6, /4, andr /3. For example, solutions at= 7 /3 are shown in Fig. 10. Figure 11
shows the relative error. The outflow boundary layers are numerically challenging, but n
not represent typical physical configurations. TH®T parameter is designed to reduce
stabilization based on the streamline direction (see Fig. 6), which is inappropriate for

outflow boundary layers in this problem, leading to the relative deterioration iE#ie
results (Fig. 11).

5.4. Transport in a Rotating Flow Field

Consider a homogeneous Dirichlet advective—diffusive problem [9, 15]in the unit squ:
(centered at the origin, Fig. 12). There are no distributed sources @), « = 10°°, and
a’ = (—y, x), representing a rotating velocity field. There is an internal boundary alor

u=0 0.5 |
u=0
] Na
0.5 !
=0 u=w(y)
u=0 35 0

FIG. 12. Statement of Problem 5.4.
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FIG. 13. Solutions of Problem 5.£ST (left), FFH (center), andRFB (right).

the negativey-axis, with the boundary conditiam(0, y) = w(y), where
w(y) = %[cos(47ry + ) + 1], -05=<y=<0. (35)

The reference solution is obtained BifH on a uniform mesh of 20& 200 elements.
The tests are performed on a uniform mesh o400 elements. Stability parameters are
evaluated in terms of velocity at element centers. Solutions are shown in Fig. 13. Tabl
shows the relative error, measured in thenorm.EST exhibits the best performance on
this smooth problem. We note that the versiofR&B implemented herein is designed for
the advective limit, while this problem contains diffusion-dominated regions.

5.5. Transport in Flow Over a Backwards Facing Step

Consider the transport problem outlined in Fig. 14, witk= 10-® and no distributed
sources { = 0).

The background flow is governed by the steady-state, incompressible Navier—Stc
equations, with Dirichlet boundary conditions as shown in Fig. 15. Parabolic patterns
specified at both inflow and outflow boundaries. The maximum inflow velocity is of ur
magnitude, leading to a Reynolds number-Ré0 with respect to the width of the inflow
region. The magnitude of the outflow velocity is determined by incompressibility (accoul
ing for interpolation of the parabolic distributions by piecewise finite-element polynomials
see, e.g., [13, p. 193].

The background flow is calculated by a stabilized finite-element method for the inco
pressible Navier—Stokes equations [8] on a uniform mesh with bilinear, square element
sideh = 1/512. Figure 16 shows the resulting vector field. This flow is used as input to t
advective—diffusive transport problem.

The reference solution to the transport problem is obtainédibyon the same mesh used
to compute the background flolw & 1/512). Tests are performed on uniform meshes witt
square elements of side whereh = 1/32, 1/64, 1/128, and 1256. Stability parameters
are evaluated in terms of velocity at element centers. Accurate integration is employe
account for the rapid variation of the background flow in some regions. Representa
solutions are shown in Figs. 17 and 18.

Figure 19 shows the relative error, measured inlthaorm. The version oRFB imple-
mented herein is designed for the advective limit, while this problem contains diffusic
dominated regions. Nonethele§¥; B exhibits the best performance except on the fines
mesh. (More regions are “numerically” diffusion-dominated as the mesh is refla8d.)
exhibits a small improvement ovEiFH on all meshes.
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TABLE Il
L, Relative Errors [%], Problem 5.4

Relative to reference solution  Relative to nodal interpolation

EST 0.779 0.344
FFH 0.904 0.484
RFB 0.809 0.353

l Vu-n =0

x u=0

FIG. 14. Statement of Problem 5.5.

v=0
_5 \
\~\\ _h\
N \
’_/ Y
H
-— "
v=0 .
y=0 ;
.l
)
;
v=_0

FIG. 15. Statement of background flow problem for Problem 5.5.
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FIG. 16. Computed background flow field for Problem 5.5.
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FIG. 18. Solutions of Problem 5.5 & = 1/256:EST (top), FFH (center), andRFB (bottom).
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FIG. 19. L, error [%]in Problem 5.5 relative to reference solution (left) and nodal interpolant (right).

6. CONCLUSIONS

The classical Galerkin finite-element method performs poorly in the computation
convection-dominated transport phenomena, even prior to the onset of spurious oscillati
This deficiency may be alleviated by stabilization. A family of stabilized methods h:
evolved over the last two decades, including Galerkin/least-squares, SUPG (also know
streamline diffusion), and the unusual stabilized finite element method. These three mett
share the approach of appending to the Galerkin equation terms containing residual-b
operators multiplied by stabilization parameters. The residual-based operators natul
account for the direction of the flow. The stability parameter is typically designed on t
basis of model problems or bounds from error analyses. Heretofore the flow direction
been ignored or regarded on ad hocbasis.

In this work we analyze the spurious anisotropy inherent in the Galerkin method, i.
the dependence of the solution on the orientation of the mesh with respect to the f
direction. On the basis of this analysis we propose definitions of the stability parame
that rationally incorporate the flow direction. One particularly simple and economical de
inition (33) is recommended for practical application. Numerical tests compare the pert
mance of the proposed method with established techniques. Employing the simple paran

that accounts for the flow direction generally improves the performance of the stabiliz
methods.
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